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Scattering by a periodic array of rectangular 
blocks 

By M. F E R N Y H O U G H  AND D. V. E V A N S  
School of Mathematics, University of Bristol, Bristol BS8 1TW. UK 

(Received 15 May 1995) 

Scattering properties of an incident field upon a periodic array of identical rectangular 
barriers, each extending throughout the water depth, are calculated based on a 
Galerkin approximation to an integral representation of the problem derived using 
the linear theory of water waves. The method incorporates full multi-modal scattering 
using a matrix formulation and is equivalent to a corresponding two-dimensional 
acoustics problem also discussed. 

1. Introduction 
In a recent paper by Porter & Evans (1995), a possible scheme for a breakwater was 

considered which consisted of a periodic array of thin-walled barriers in the form of 
identical vertical barriers extending throughout the water depth. Using classical linear 
water wave theory they separated out the depth dependence and reduced the problcm 
to solving the two-dimensional Helmholtz equation, which is identical to a problem 
in linear acoustics, optics or electromagnetism involving an equivalent diffraction 
grating. They were able to obtain extremely accurate complementary bounds to the 
solution and include multi-modal scattering. Other authors who have considered 
this problem are Dalrymple & Martin (1990) and Williams & Crull (1993), the latter 
exploiting a technique used by Achenbach & Li (1986) for a general orientation of 
the barriers. 

A similar problem in acoustic scattering was also considered by Linton & Evans 
(1993a) but in this case the barriers were rotated through an angle n/2 to form an 
array of parallel plates. They showed that an accurate approximatc solution could be 
obtained by relating the full problem to two simpler problems, each of which could 
be solved explicitly using a residue calculus technique. However the method was 
restricted to single mode scattering. There exists an enormous amount of literature 
on the general theory of gratings. See for example Petit (1980) and Wilcox (1984) for 
a detailed discussion and extensive bibliographies. 

In this paper we consider the multi-modal scattering properties of an inci- 
dent field upon a periodic array of rectangular blocks using ideas developed in 
Evans & Fernyhough (1995) hereafter denoted by I, where we provided numerical 
evidence of edge waves travelling along a periodic coastline consisting of a straight 
and vertical cliff-face with protruding rectangular barriers. The assumption that the 
water depth is constant again reduces the problem to the two-dimensional Helmholtz 
equation with analogies in acoustics for example, as in the papers described above. 

The rectangular geometry invites an approach based on enforcing the continuity 
of appropriate eigenfunction expansions resulting in infinite systems of equations for 
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the unknown Fourier coefficients in the expansions in each region. Many authors 
have used this approach for related problems, and have obtained the coefficients by 
truncation of the infinite system. Thus Mongeau, Amram & Rousselet (1986) used 
this method to consider the scattering of sound waves by a periodic array of slotted 
waveguides, extending the work of Kristiansen & Fahy (1972). This approach can be 
criticised on two counts. First the systems obtained are usually slowly convergent 
since the eigenfunctions are required to model the behaviour of the flow near the 
sharp corners of the blocks where the flow velocity is unbounded. Secondly, there 
is usually no guarantee that the truncated system converges to the solution of the 
infinite system as the truncation parameter increases indefinitely. 

Here we proceed differently. Rather than solve the infinite system directly, we 
formulate the problem in terms of integral equations having positive kernels and 
identify the important reflection and transmission coefficients as integrals of the 
solutions to these equations described by the elements of certain matrices. A Galerkin 
approximation is then sought using expansion functions which correctly model the 
singularities at the edges of the blocks in a similar fashion to I, and which provide the 
maximum simplification of the results. It turns out that extremely efficient results can 
be obtained with no more than five expansion functions to give at least three-figure 
accuracy. In the formulation of the matrix system we also show that the energy 
conservation condition is automatically satisfied from the final form of the reflection 
vector. The problem is formulated and the matrix system derived in $2. 

In $3 we provide results for various geometries of the blocks, wave frequency 
and angle of incidence of the incoming wave. We also recover the geometries 
of Porter & Evans (1995) and Linton & Evans (1993a) for in-line and parallel plates 
respectively by 'squashing' the rectangular blocks in the required direction, and obtain 
excellent agreement. We show a comparison with results from scattering by an infinite 
row of circular cylinders by Linton & Evans (1993b). 

2. Formulation and solution 
Equations and boundary conditions 

Cartesian coordinates are chosen with the rectangular blocks extending throughout 
the water depth h. Thus the free surface is at z = 0, the sea-bed at z = -h and the 
blocks are equally spaced as shown in figure 1, and positioned symmetrically with 
respect to the y-axis. The distance between the centre of adjacent blocks is d. The 
length of each block is 2a and width c = d - b. Because the blocks extend throughout 
the depth it is possible to extract the z-dependence from the linearized velocity 
potential @(x, y ,  z ,  t )  describing the motion. In addition we assume a time-harmonic 
motion of frequency 0/2n so that 

@(x, y ,  z ,  t )  = Re { d(x ,  y) coshk(z + h)  e-'@'} , (2.1) 

where k is the real root of 

w2 = gk tanh kh. 

In the context of acoustics (2.2) is replaced by 

= kc, (2.3) 

where c, is the velocity of sound. 
On the basis of either linear acoustics or water waves we seek solutions to the 
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2a 

FIGURE 1. Periodic rectangular arrays. 

two-dimensional Helmholtz equation 

a24 a*+ - + - + k 2 4  = 0 
ax* ay* 

in the fluid, and 

dn 
on the boundaries of each block. 

We assume an incident wave from x > a of the form 
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> (2.6) 4i(x, y )  = e-iHxcos b--~ sin 00) 

having wavelength i = 2n/k and making an angle n - 0, with the positive x-direction, 
o G eo < n/2. 

Equation (2.6) may also be written 

, (2.7) +,( ) = e-i(ao.u-ifoyl 
I X,Y 

where ,!?o = k sin 8,, a0 = k cos 0,. 
As in I, the periodicity d of the bIocks shows that the fluid at y + d can only differ 

from the field at y by a factor eiDod, being the shift in phase of the incident wave. This 
enables us to write 

(2.8) $(x,y + md) = eimflod4(x, y), m = 0, &I, +2,. . . , 
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which for x 2 a is satisfied by 
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W Y )  = eiPO%(x,y) 

where y(x,y) is periodic in J’ with period d.  Equation (2.8) provides the extension of 
the solution outside the region y E [O,d]. 

The most general form for +(x ,y )  satisfying (2.9) is 
M 

where 
2n.n 

f i n  = Po + ~ = ksino,, 
d 

say, and 
1 I2  a, = ( k 2 - P ; )  . 

We may write (2.11) as 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
n l  

sin 0, = sin Bo + - 7  

d 
which has pairs of real solutions On, TC - 0,, corresponding to waves travelling in 
directions symmetric about the line x = 0. The precise number of real solutions 
depends upon l / d  and 00.  

In general we have N = r + s + 1 real solutions with 

- r < n < s  (2.14) 

where 

and 

s = (1 -sin&) - [ :I 
and [XI denotes the integer part of x. 

Note that for 
A 
- > 1 +sin& 
d 

(2.15) 

(2.16) 

(2.17) 

the only real solutions are 00 and .n - 00 and there will be a single reflected and 
transmitted wave. 

We define 

(2.18) 

From the symmetry in x, it is possible to express +(x,y) as 

where +s(+a) is even(odd) in x so that 

(2.20) d 4 s  - = O ,  $a=O,  x = O ,  f i z d < y < m d + b  (~n=0,&1,&2, ...). ax 
The decomposition (2.19) enables us to solve for two separate functions +s , in 
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x 2 0 only, the extension to x < 0 being through use of 

M - X ,  Y )  = M x ,  Y )  and M - X ,  Y )  = -+a(& Y ) .  (2.21) 

We shall consider in detail the problem for 4s and then describe the slight changes 
needed in obtaining 4,. 

Solution in the outer region 
From the preceding subsection $b(x, y) satisfies (2.4), (2.5), (2.20) and appropriate 
conditions at x = +a. The most general form of solution in x 2 a satisfying (2.4), 
(2.8) is 

53 

+s(x, y) = es"x-Q)Yo(y) + C Ane-Y"(x-a)Y n .  (v) (2.22) 
n=--30 

where 

(2.23) 
2nn 

~ , ( y )  = eifinY, bn = + __ 
d 

satisfies 

f ~ t n ( ~ ) ~ n ( y ) d y  = d m n  (2.24) 

and the bar denotes complex conjugate. 
We have 

yn  = (pi - k2)1/2 > 0 for k < Pn (2.25) 

and we define yn  = -ian for n = -r, -r + 1,. . . > s so that there are r + s + 1 reflected 
waves in general, where r,s satisfy (2.15) and (2.16). 

Solution in the inner region 
For 0 6 x < a, 0 < y < b, the solution satisfying (2.4), (2.5), (2.20) is 

n=O 

satisfying 

(2.26) 

(2.27) 

(2.28) 

The solution 4s(x, y + md) is obtained from (2.26) by inserting the factor eimflod on the 
right-hand side, so as to satisfy (2.8). 

For k > p n  there are wave terms in (2.26) involving cos(k,x). The number of 
such terms is given by M = [2b/I] + 1, there being just one such term, cos(kx), if 
I > 2b. It can be seen from (2.14)-(2.16) that the precise values for M ,  N depend 
on the parameters A / d ,  A/b and 60.  However if I > 2d 2b it follows from (2.17) 
that M = N = 1 and there is just one reflected wave and one wave travelling along 
0 < y < b, 0 < x < a. 
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Continuity conditions 
We need to apply conditions of continuity to 4s and i?#,/i?x at x = a, 0 < y < b and 
to satisfy d$,/dx = 0, x = a, b < y < d. Once this is done the solution will apply for 
all y because (2.8) is satisfied. 

From (2.22) and (2.26) in 0 < y < b 

(2.29) 

where L, : {x = a, 0 d y d b)  and Lb : (x = a, b < y < d}. 
We first multiply (2.29) by Y&) and integrate over [O,d] using (2.24) to obtain 

c 

Again, multiplying (2.30) by ipnt(y) and integrating over L, gives 

4nbBn sinh(qna) = V(Y ) W ~ ( Y  )dy .I 
Continuity of $,y on L, now requires, from (2.22) and (2.26), that 

(2.31) 

(2.32) 

(2.33) 
n=--a) n=O 

Reformulation with a positive de$nite operator 
At this stage we could substitute for A,,, B, in (2.33) using (2.31) and (2.32) to derive 
an integral equation for U(y) .  This could be solved numerically and the coefficients 
A,, B, then determined from (2.31) and (2.32). However the kernel is not positive 
definite and the many attractive features of positive definite operators will be lost. 
We will use a Galerkin approximation and make use of lower bound properties of 
approximate solutions, so at the cost of some increase in algebra we proceed as 
follows. 

The A,  for n = -r, --r + 1,. . . , s, correspond to amplitudes of reflected waves in 
x 3 a. To emphasize their prominence we write A ,  = R,, n = - r , - r  + 1, ..., s. 
Similarly the Bn for n = 0,1,. . . , M - 1, correspond to amplitudes of wave-like terms 
in 0 d x d a which, whilst not having the physical significance of the &, prevent 
the kernel from being positive definite. Thus we substitute for all the A,, in (2.33) 
using (2.31) except n = -r, -r + 1,. . . , s and for all the B, in (2.33) using (2.32) except 
n = 0,1,. . . ,M  - 1 to obtain 

S M -  I 

where 



Scattering by a periodic array of rectangular blocks 

and the notation C’ means that the terms TZ = -r, -r + 1:. . . , s have been omitted. 
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Let u,(y), o,(y) satisfy 

Un(t)K(y, t)dt = Y,(y), y E L, (n = -r, -T + 1, .  . . ,s) (2.36) 

and 

un(t)K(y, t)dt = yn(y), y E L, (n = 0,1,. . ., M - 1). (2.37) 

Then 
S M-1 

satisfies (2.34). 
We introduce the inner product notation 

(2.39) 

where the bar denotes complex conjugate, and define the matrices S i 2 x N ) ,  Si$xM), 
$3) $4)  

( M x N ) ,  ( M x M ) ,  where 

~22 = (Un, ym), s$z,’ = (vn, ym), $3,’ = (un, ~ m ) ,  sgj = (on,  Vm). (2.40) 

Then substituting (2.38) into (2.31) gives 

5 M -  I 

ia,d(R,, - 6,,0) = C (R, + Gmo)S;fn) - C Bm cos(kma)S$!, n = -r , - ~ + l , .  , . , s  (2.41) 
m=--I m=O 

and substituting (2.38) into (2.32) gives 

S M-I 

-k,bB, sin(k,a) = C (Rm+Smo)SE-C B, cos(k,a)S;!, n = 0,1,. . . , M-1. (2.42) 
m=-r RZ-0 

Define 

D(l)  = diag(a,d}, n = -r, -r + 1 , .  , . , s, 

D(’) = diag{cos(k,a)), n = 0,1,. . . , M - 1, 

D(3)  = diag{k,b sin(k,a)}, n = 0,1,. . . , M - 1, 

U T  = (0,. . . ,0, 1,0,. . . ,O), N terms, 1 at zeroth place, 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

RT = (Rr,Rr+l,. . . , RJ, N terms, 

BT = (Bo, B1,. . . , &-I) ,  M terms. 

and 

Then (2.41) and (2.42) may be written as 

(2.47) 

(2.48) 

(2.50) 



270 

from which B can be eliminated to give R as 
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R = -(c - ai1))-1(c + iD('))u (2.51) 

where 
(2.52) 

Once R has been determined either (2.49) or (2.50) can be manipulated to find B. 
Despite the apparent complexity of (2.51) it should be emphasized that the matrices 

S"), i = 1,2,3,4, are generally of low order, depending upon the number of modes 
present, D(i), i = 1,2,3, are simply diagonal matrices, and U is a vector having unity 
as its only non-zero element. 

In the case of 1 > 2d, N = M = 1 and all matrices reduce to scalars. It is clear 
from (2.51) that with R = {&}, [&I2 = 1 as required from energy considerations. 

The energy condition for the general case is 

c = s(1) - S(2)0(2)(S(4)Di2) - /3(3))--1$3). 

S 

(2.53) 
n=--I 

or in matrix notation 
R'D(')R = U?'Di1) u, (2.54) 

It turns out later that C T  = c, and using (2.51) with simple matrix operations we 
can show that the energy conservation condition is indeed automatically satisfied. 

Let us now return to (2.36), (2.37) and define 

and 
Yn+-1(y), n = 1,2,. . ., N ,  
~ , - ~ - ~ ( y ) ,  n = N + 1,. . . , N  + M .  

(2.55) 

(2.56) 

Then we can combine (2.36), (2.37) in the form 

wn(t)K(y,  t)dt = xn(y) ,  n = 1,. . . , N + M (2.57) 

and define the ( N  + M )  x ( N  + M )  matrix W by 

Wfn" = l* Wn(Y)Xm(y)dY. 

It follows that 

We now write (2.57) and (2.58) in operator form, thus 

X W ,  = X n  

(wn7xffl) = Wffln. 

m = K ( t , Y )  

with 

Since from (2.35) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 
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then 

from which it follows that 

and, from (2.52), (2.59) C r  = c as previously stated. 

(u, .Xu) = ( X u ,  v), vu, v 

WT = w  
Furthermore 

27 1 

(2.63) 

(2.64) 

which from (2.60), (2.61) makes it clear that W,, is real and positive for n = 
1,2,. . . , N + M .  

Approximate solution by Galerkin method 
We now seek a Galerkin approximation to (2.60) in the form fin(y) w wn(y) such that 

(2.66) (fin, XfiJ = (Gn, X n )  = 

say. It follows from (2.63), (2.65) and (2.66) that 

0 < firm < w n n  (2.67) 

and a similar result can be proved for the off-diagonal elements as shown in Portcr 
& Evans (1995). Thus 

IRe{@mn}l < /Re(Wnn)/ (2.68) 
and 

IIm( m m n }  I < IIm{ w m n }  I * (2.69) 

It remains to choose an appropriate expansion for the function w,(y). Now wn(y) 
involves un and vn each of which in turn originatcs from the decomposition of the 
velocity U(y) in (2.38). We shall choose wn(y)  to have the same singularity at y = 0, b 
as does U(y), corresponding to the corners of the block. Thus it is easy to show that 
U ( y )  - AY-''~ as y + 0 with a similar behaviour as y +. b. 

We thus choose 
P 

Wn(Y) = c u nr b ( )  r Y > n=1,2 ,  ..., N + M ,  (2.70) 
r=O 

where 

Here Ci ( 2 )  are the ultraspherical Gegenbauer polynomials given by 

T ( v  + m)r(V + n - m) 
C,"(COS 0) = c cos(n - 2m)O. 

m=O m!(n - m)! [T(V) I*  

(2.71) 

(2.72) 

See, for example Abramowitz & Stegun (1972) and Erdklyi et al. (1954) for properties 
of these polynomials some of which are given in I. 
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Notice that each of the b,(y) has the anticipated singularity at y = 0, b. It should be 
emphasized that the choice of these polynomials and the rather curious combination 
of factors in (2.71) is solely to achieve simplification of the final results. See for 
example (2.80) and (2.81) below. 

We now substitute (2.70) into (2.60), multiply by bm(y) and integrate over L, to 
obtain for n = 1,2,. . . , N  + M ,  m = 0,1,. . . , P 

~ 

P 

r=O 

where (2.35) has been used for 

and 

where 

and 

F m n  = (wn, brn) = S, Wn(y)b,~dy.  

Also substituting (2.70) into (2.61) we find 

P 

r=O 

It can be shown using results stated in I that 

and 

(k) ‘j6 Jm+1/6 (5) 3 

71 F,, = “I2 im cos -(m + n )  
2 

whilst 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

Note that in I, 0 < Pod < n/2 and thus G,,, kept the same form for all m,n. Here this 
is not so (for example the case of normal incidence is Bod = 0). In general it can be 
shown that if any = 0 then (2.81) becomes G,, = 66,,0/2~/~r(1/6). 
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Thus from (2.74), (2.79)-(2.81), 

co 113 coth q,a 
+ r=M p r m n q , b  (;) Jm+1/6 (5) Jn+1/6 (5) (2.82) 

where 
Prmn = {(-I), + {(-I)” + (-I)”} (2.83) 

which shows that the K,, are real. Using this fact we can show from (2.73), (2.78) 
that 

W = aKaT (2.84) 

in an obvious matrix notation. 
This completes the solution for the symmetric functions &. A similar procedure 

is necessary for the antisymmetric function $a. The only major changes are that in 
the final formulation coth is replaced by tanh in K,, in (2.82), and /I(’) in (2.44) and 
/I(3) in (2.45) are replaced by d2) = diag{-isin(k,a)} and D(3) = diag{ik,bsin(k,a)), 
respectively. 

If we re-label the R, from the 4A solution as 4 and those obtained from the &, 
solution as we can obtain overall reflection and transmission coefficients since 
from (2.19), (2.21) 

(2.85) 
l S  

4(x, y )  - e-iaa(x-a)Y’o(y) + x(4 + K)eian(x-a)yU,(y) as x += +m, 
n=--T 

n ( y )  as x -+ -m, (2.86) 
l S  C (RS, - %)e-ian(x+a)y +(x, y )  - 

n=--I 

Thus we can define the overall reflection and transmission coefficients R, and T, as 

R,,, = i(Rs, + R t f )  and Tn = $(RS,  - q). (2.87) 

Finally using the fact that the energy conservation condition (2.53) for the symmetric 
and antisymmetric solutions is automatically satisfied, it is not difficult to show that 
the total energy condition for the whole problem which can be written in the form 

(2.88) 

is also automatically satisfied. 

3. Results 
We seek to compute the reflection and transmission properties of the periodic array 

of rectangular blocks. Given the angle of incidence of the incoming wave field 00, 
the wavenumber k = 2n/A related to the frequency of motion u/2n by (2.2), and a 
particular geometry determined from a, b and d,  we first find the number of reflected 
and transmitted modes R,, and T, (-r < n < s) given by N = r + s + 1 where r 
and s are determined from (2.15) and (2.16). Since we have separated the problem 
into symmetric and antisymmetric parts we have to find the two sets of solutions 
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I I I I 1 I I I I 

0 4 8 12 16 20 
kd 

FIGURE 2. IRnl, IT,, against kd where B0 = 0, a /d  = 0.0001 and h/d = 0.5. Also shown (using 
diamond symbols) are results from Porter & Evans (1995) for the vertical plates. 

determining @) in order to calculate R,, and T,, from (2.87). In each case we first 
have to choose P trial functions b,(y) and then calculate anr from the system (2.73) 
which depends on K,, given by (2.82) and (2.83). Note that for large r the rth term 
of each of the series in (2.82) is O ( T - ~ / ~ )  and this is sufficient for K,, to be computed 
to any desired accuracy as a function of all the input parameters 00, k,  a, h and d.  
In practice r = 500 was generally sufficient to give at least three-figure accuracy in 
the elements Km,. Once the anr have been calculated the matrix W is calculated from 
either (2.84) or (2.78) and thus the matrices i = 1,2,3,4 by (2.59). The reflection 
vector R is then determined from (2.51) and (2.52), from which w), -r < n < s are 
found after applying the appropriate changes to the formulation for symmetric and 
antisymmetric solutions. Convergence of R with increasing P proves to be extremely 
rapid, with the final forms for R,,, T,, converging to at least three significant figures 
for P 3 5 .  

The number of parameters in the problem is large and many possibilities exist 
for presentation of the results. We shall begin by comparing our results with the 
known exact numerical results of Porter & Evans (1995) who used complementary 
bounds to obtain results for scattering properties of periodic in-line thin barriers. It is 
clearly not possible to put a /d  = 0 in our formulation. However in figure 2 we have 
plotted the modulus of the reflection and transmission coefficients against the non- 
dimensionalized wavenumber kd for the case of normal incidence Oo = 0, b/d = 0.5 
and u/d  = 0.0001. We see that the higher modes start to appear at multiples of 271 

(kd = 2nn, n = 1,2,. . .) and that lRknl = I T+,I for n 2 1. Also shown using diamond 
symbols are values calculated from Porter & Evans (1995) for the same case. We see 
from the figure that the results agree extremely well. 

Another comparison of results is made in figure 3 where l&l is plotted against 
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I I I 1 I I 3 I 

ald 
FIGURE 3. l&l against a l d  for various values of kd where Oo = 2 ~ 1 3 ,  bld = 1.0. Also shown (using 

diamond symbols) are results from Linton & Evans (1993) for the parallel plates. 

a /d  for various values of kd (= 4x15, x /2 ,  7115) when 6, = 27113 and b/d = 1.0. 
These results correspond to the scattering by an array of parallel plates and as we 
can see these results also agree extremely well with the results of Linton & Evans 
(1993a, figure 2) (shown using diamond symbols) obtained for this geometry using a 
technique based on residue calculus. In the previous figure we could not set a/d  = 0 
identically because of the formulation of the problem, but in this case b / d  can be set 
exactly to 1 without having to take a numerical limit. We also see in figure 3 that we 
have a zero of reflection when kd = 4n/5 at approximately a/d  = 0.83. 

In the formulation of the Galerkin approximation we ‘built in’ the required O(T- ’ ’~ )  
singularity as we approach the corners of the blocks, but for the case when we ‘squash’ 
the blocks into vertical and parallel plates the singularity is now O(r-‘j2) at the end 
of the plates. It is still remarkable how good the agreement is despite this difference 
in singularities. 

In figure 4 we have plotted l & l  and ]Tol against 60 for two cases where the 
blocks are of square cross-section for kd = 1.0, (a )  a/d = 0.1768, b/d = 0.6464 and 
(b )  a/d  = 0.25, b /d  = 0.5. We see that we have total reflection for both cases. Also 
plotted with symbols are results obtained by Linton & Evans (1993b, figure 3a) for 
the scattering by a periodic array of circular cylinders. These values have been chosen 
so that (a) the blocks fit exactly inside the cylinders and (b )  the cylinders fit exactly 
inside the blocks. We see that in both cases the cylinder reflects less of the incoming 
wave field over most angles of incidence, suggesting that the shape of obstacles is 
important in determining the amount of reflection and transmission. 

In figure 5, l & l  is plotted against 60 for various values of bld,  and kd = 1.0. For 
all these values only one travelling mode exists. The first thing to note is that as 
00 += 7112, -+ 1 which is what one would expect as the incident field travels 
parallel to the array of blocks. We also see that at normal incidence (60 = 0) the 
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0 d 8  3d8  

00 

FIGURE 4. I&/, IT01 against Oo (-, I&[; - - -, ITol) where kd = 1.0 with (a) inner square 
a/d = 0.1768, b/d = 0.6464 ; (b) outer square a l d  = 0.25, b l d  = 0.5. Also shown by the square and 
diamond symbols are l&l, IT01 for circular cylinders by Linton & Evans (1993b). 

00 
FIGURE 5. against 00 for various values of b/d where a/d  = 0.4, kd = 1.0. 
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kd 
FIGURE 6. IR,l and ITn/ against kd where a/d = 0.7, 00 = n/6 and bld = 0.4. 

larger the gap ( b / d )  the less reflection we have and as b/d + 0, the reflection increases 
as expected. Note also that complete transmission (I&( = 0) of the incident wave 
occurs at larger angles as the gap size (b /d )  decreases. 

In general as kd is increased more travelling modes occur and the graphs produced 
for lRnl and lTnl become more complicated. A typical example is shown in figure 6 
for the case a/d  = 0.7, b/d = 0.4 and 80 = x / 6 .  Before the first cut-off, kd < 471/3, 
there exists two zeros of reflection and as we pass the first cut-off the second set of 
travelling modes appears. Note that l R l l  > 1 (= 1.22) although the energy condition 
(2.88) is still satisfied. Again another set of travelling modes appears at kd > 8n/3 
with I R 2 I  = 1.60. 

Because of the very complicated behaviour of the reflection and transmission 
coefficients as higher modes appear it is more illuminating to consider the total 
transmitted wave energy through the array of rectangular blocks as a proportion of 
the incident wave energy. This quantity is also calculated in Porter & Evans (1995) 
and is given by 

In figure 7 we have plotted TLot,l against 0, for four cases, b/d = 0.1, 0.4, 0.6, 0.8, 
where a/d = 0.4 and kd = 5.0. We see that below the cut-off at 00 = sin-'(2n/5 - 1) 
(= 0.260) the larger b/d, the larger Ttotal as expected, but as 00 increases beyond 
Bo = 1.39 this behaviour is reversed. 

In figure 8 Ttotal is plotted against kd for various 00 and for a/d = 0.1 and b/d = 0.4. 
Notice that there appears to be total reflection for 00 = 0 at kd = 27c. However this 
would be masked in reality by the proximity of the occurrence of zero reflection at 
a slightly lower value of 80. It is clear that using a periodic array of blocks as a 
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0 2 4 
kd 

FIGURE 8. Ttolol for various 00 against kd where a l d  = 0.1 and b/d = 0.4. 
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breakwater, whilst being effective in certain parameter ranges, can also produce large 
amounts of transmission through interference effects. 

4. Conclusion 
In this paper, a technique based on ideas developed in Evans & Fernyhough (1995) 

has been given for numerically calculating the reflection and transmission coefficients 
for the problem of scattering by a periodic array of rectangular blocks. By using a 
matrix formulation the full multi-modal scattering was able to be considered and the 
problem was reduced to the solution of a set of integral equations to which a Galerkin 
approach was applied involving the use of ultra-spherical Gegenbauer polynomials 
as trial function expansions. 

The solution obtained proved to be extremely accurate and numerically efficient for 
all parameters and gave good agreement with the results of Porter & Evans (1995) 
and Linton & Evans (1993a) for in-line or parallel plates. 
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